Combinatorial Independence in Measurable Dynamics

نویسنده

  • HANFENG LI
چکیده

We develop a fine-scale local analysis of measure entropy and measure sequence entropy based on combinatorial independence. The concepts of measure IE-tuples and measure IN-tuples are introduced and studied in analogy with their counterparts in topological dynamics. Local characterizations of the Pinsker von Neumann algebra and its sequence entropy analogue are given in terms of combinatorial independence, l1 geometry, and Voiculescu’s completely positive approximation entropy. Among the novel features of our local study is the treatment of general discrete acting groups, with the structural assumption of amenability in the case of entropy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independence in Topological and C∗-dynamics

We develop a systematic approach to the study of independence in topological dynamics with an emphasis on combinatorial methods. One of our principal aims is to combinatorialize the local analysis of topological entropy and related mixing properties. We also reframe our theory of dynamical independence in terms of tensor products and thereby expand its scope to C-dynamics.

متن کامل

In Topological and C ∗ - Dynamics

We develop a systematic approach to the study of independence in topological dynamics with an emphasis on combinatorial methods. One of our principal aims is to combinatorialize the local analysis of topological entropy and related mixing properties. We also reframe our theory of dynamical independence in terms of tensor products and thereby expand its scope to C-dynamics.

متن کامل

∗ - Dynamics

We develop a systematic approach to the study of independence in topological dynamics with an emphasis on combinatorial methods. One of our principal aims is to combinatorialize the local analysis of topological entropy and related mixing properties. We also reframe our theory of dynamical independence in terms of tensor products and thereby expand its scope to C-dynamics.

متن کامل

Family-independence for Topological and Measurable Dynamics

For a family F (a collection of subsets of Z+), the notion of Findependence is defined both for topological dynamics (t.d.s.) and measurable dynamics (m.d.s.). It is shown that there is no non-trivial {syndetic}-independent m.d.s.; a m.d.s. is {positive-density}-independent if and only if it has completely positive entropy; and a m.d.s. is weakly mixing if and only if it is {IP}independent. For...

متن کامل

Measurable chromatic and independence numbers for ergodic graphs and group actions

We study in this paper some combinatorial invariants associated with ergodic actions of infinite, countable (discrete) groups. Let (X,μ) be a standard probability space and Γ an infinite, countable group with a set of generators 1 / ∈ S ⊆ Γ. Given a free, measure-preserving action a of Γ on (X,μ), we consider the graph G(S, a) = (X,E(S, a)), whose vertices are the points in X and where x 6= y ∈...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007